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DISCLAIMER
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Outline

� global concept of microgrid and electric vehicle (EV) modeling

� Lawrence Berkeley National Laboratory’s Distributed Energy 
Resources Customer Adoption Model (DER-CAM)

� presentation summary

How does the number of EVs connected to the building change 

with different optimization goals (cost versus CO2) ?

� ongoing EV modeling for California: the California commercial 
end-use survey (CEUS) database, objective: 138 different 

typical building - EV connections and benefits

� detailed analysis for healthcare facility: optimal EV connection 
at a healthcare facility in southern California

� conclusions
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Global concept
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single building at the building site
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DER-CAM

The Distributed Energy Resources 
Customer Adoption Model 

(DER-CAM)
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DER-CAM

� is a deterministic Mixed Integer Linear Program (MILP), 
written in the General Algebraic Modeling System (GAMS®)

� minimizes annual energy costs, CO2 emissions, or multiple 
objectives of providing services to a building microgrid

� produces technology neutral pure optimal results, delivers 
investment decision and operational schedule

� has been designed for more than 9 years by Berkeley Lab 
and collaborations in the US, Germany, Spain, Portugal, 
Belgium, Japan, and Australia 

� first commercialization and real-time optimization steps, e.g. 
Storage & PV Viability Optimization Web-Service (SVOW), 
http://der.lbl.gov/microgrids-lbnl/current-project-storage-

viability-website
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Presentation summary 

Major Optimization Results for a 
Healthcare Facility in San Diego Gas 

and Electric Service Territory
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Different optimization goals
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Multi-objective frontier (minimize 
the combination of costs and CO2

emissions for building)
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Multi-objective frontier / EVs connected
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� connected EVs reach maximum around “min cost” solution (w=0)

� with increasing w: stationary batteries become more attractive to 
building than EVs � second life of EV batteries?

draft results
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Ongoing EV modeling for California

The California Commercial End-Use 
Survey (CEUS) Database
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CEUS
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objective / final EV project goal : EV modeling at 138 buildingsx) in 
nine climate zones

x) hospitals, colleges, schools, restaurants, warehouses, retail stores, groceries, offices, and hotels
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Detailed analysis for healthcare fac.
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2020 Equipment Options, Tariffs, 
and Building Analyzed
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Equipment

EV-building connection period 8am – 5pm

EV-home connection period 7pm – 7am

EV battery state-of-charge (SOC) when arriving at the healthcare
facility

73%

EV battery SOC when leaving the healthcare facility ≥32%

EV battery charging efficiency 95.4%

EV battery discharging efficiency 95.4%

EV battery capacity 16 kWh

Maximum EV battery charging rate 0.45 [1/h]

� EVs belong to employees/commuters

� EVs can transfer energy to the building and vice versa

� the building energy management system (EMS) can manage 
(charge/discharge) the EV batteries during connection hours

� EV owner receives exact compensation for battery 
degradation and energy delivered to the building– 6pm
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� also combined heat and power (CHP), PV, solar thermal, 
stationary battery, etc. is considered in the analysis

� technology costs in 2020 are based on “Assumptions to 
the Annual U.S. Energy Outlook”, e.g.
� fuel cell with heat exchanger: $2220 - $2770/kW, 

lifetime: 10 years

� internal combustion engine with heat exchanger: $2180 
- $3580/kW, lifetime: 20 years

� PV: $3237/kW, lifetime: 20 years

� stationary battery: $193/kWh

� etc.
Details can be found at “The CO2 Abatement Potential of California’s Mid-Sized Commercial Buildings.” 
Michael Stadler, Chris Marnay, Gonçalo Cardoso, Tim Lipman, Olivier Mégel, Srirupa Ganguly, Afzal 
Siddiqui, and Judy Lai, California Energy Commission, Public Interest Energy Research Program, CEC-
500-07-043, 500-99-013, LBNL-3024E, December 2009. 
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Building / tariffs

� electricity and gas loads for a San Diego healthcare facility 
are based on CEUS

� peak electric demand: 399 kW

� annual electricity demand: 2.33 GWh

� annual natural gas consumption: 2.13 GWh (72700 
therm)

� TOU rates and demand charges: 

� on-peak electricity up to 0.13 $/kWh 

� off-peak rates around 0.09 $/kWh

� demand charges up to 12.8 $/kW-month

� electric rate at residences (homes) for EV charging: 
$0.138/kWh
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Detailed analysis for healthcare fac.

16

Optimization Results for Summer 
Days

Optimal Investments in DER 
Technologies and Operation, 

Optimal EV Discharging / Charging 
subject to different building 

strategies
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Diurnal electric pattern for min cost
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EVs are used to reduce 
utility costs during 
expensive peak hours

draft results

EVs connect 
to building EVs disconnect
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Diurnal electric pattern for point S1
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draft results

• EVs are used to reduce utility costs 
during expensive peak hours

• PV is NOT used to charge EVs
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Diurnal electric pattern for point S3
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• big stationary 
battery

• stationary 
batteries 
charged by PV

• no EV batteries

draft results
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Diurnal electric pattern for point S4
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draft results
• stationary 

battery > EV
• some EVs 

charged in 
the afternoon



Environmental Energy Technologies Division

Storage

Conclusions
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Storage conclusions

� EV Charging / discharging pattern mainly depends on the 
objective of the building (cost versus CO2)

� performed optimization runs show that stationary batteries 
are more attractive than mobile storage when putting more 
focus on CO2 emissions. Why? Stationary storage is 
available 24 hours a day for energy management� more 
effective

� stationary storage will be charged by PV, mobile only 
marginally

� results will depend on the considered region and tariff

� final work will show the results for 138 different buildings in 
nine different climate zones and three major utility service 

territories
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End

Thank you!

Questions and comments are very 
welcome.
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High-level schematic 

DR Input 
Parameter

Energy Sales

Example Constraints
energy balance – supply & demand

financial – payback
technical – roof area for PV

Hourly Optimal 
Operating 
Schedule
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Representative MILP

Objective function, e.g. min. annual energy 
bill for a test year:

+energy purchase costs
+amortized DER technology capital costs
+annual O&M costs
+ CO2 costs
- energy sales

Energy balance
+energy purchase
+energy generated onsite
= onsite demand + energy sales

Operational constraints
-generators, chillers, etc. must operate within 
performance limits

-heat recovered is limited by generated waste heat
-solar radiation / footprint constraint

Regulatory constraints
-minimum efficiency requirement
-emission limits
-CO2 tax
-CA min. eff. requirement for subsidy and (in future) feed-in tariff
-ZNEB

Financial  constraints
-max. allowed payback 
period, e.g. 12 years

Storage and DR constraints
-electricity stored is limited by battery size
-heat storage is limited by reservoir size
-max. efficiency potential for heating and 
electricity

Simplified* 
DER-CAM 

model

*does not show all constraints
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